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Abstract: This paper investigates the correlation between oral grades and final written examina-
tion grades in a higher education military academy. A quantitative, correlational methodology
utilizing linear regression analysis is employed. The data consist of undergraduate telecommuni-
cations and electronics engineering students’ grades in two courses offered during the fourth year
of studies, and spans six academic years. Course One covers period 2017–2022, while Course Two,
period 1 spans 2014–2018 and period 2 spans 2019–2022. In Course One oral grades are obtained by
means of a midterm exam. In Course Two period 1, 30% of the oral grade comes from homework
assignments and lab exercises, while the remaining 70% comes from a midterm exam. In Course Two
period 2, oral grades are the result of various alternative assessment activities. In all cases, the final
grade results from a traditional written examination given at the end of the semester. Correlation
and predictive models between oral and final grades were examined. The results of the analysis
demonstrated that, (a) under certain conditions, oral grades based more or less on midterm exams
can be good predictors of final examination scores; (b) oral grades obtained through alternative
assessment activities cannot predict final examination scores.

Keywords: assessment; oral grades; final exam; correlation; prediction; linear regression; engineering
course; alternative assessment

1. Introduction
1.1. Objective of the Study and Research Questions

Academic achievement is a complex process of student engagement in educational
procedures and varies greatly from student to student for the same course, as well as from
course to course for the same student, as faculty members can assure. Assessment of aca-
demic achievement represents a measurement of students’ knowledge, skills, and abilities.

The aim of this research is to investigate the possible correlation of student perfor-
mance as expressed in the oral grades and the written final examination grades in a Greek
military academy (henceforth “the Academy”), located in Attica, Athens’ metropolitan area.

The Academy offers, among other specializations, a degree in telecommunications
and electronics engineering (TEE). This program is equivalent to a bachelor’s degree in
electrical engineering [1]. In contrast to universities, engineering classes have a small
number of students.

The data were collected from two technology-related undergraduate 400-level courses:

• Course One, Fall 2017, Fall 2019, and Fall 2021 semesters;
• Course Two, period 1: Fall 2014, Fall 2015, and Fall 2017 semesters;
• Course Two, period 2: Fall 2019, and Fall 2021 semesters.
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The two courses were taught by different teachers to the same students at the same
period of time. Two datasets were derived per semester per course: oral grades and
final exam scores. In both courses, the final written exam typically consisted of a set of
open-ended questions and problems, similar to those included in the textbooks.

1.1.1. Alternative Assessment

Alternative assessment is a method of evaluation that measures a student’s level of
proficiency in a subject as opposed to the student’s level of knowledge (typically measured
by exams). The concept of alternative assessment is to allow students to acquire and
demonstrate knowledge and skills by performing tasks. Alternative assessment is also
called performance testing or authentic assessment, because it is deeply rooted in one’s
ability to do something by leveraging newly-gained knowledge. As part of the assessment,
the students have to perform meaningful tasks that reflect a clear understanding of the
teaching and learning objectives. Since Course Two is mostly a practical subject, it makes
sense to adopt alternative assessment [2].

1.1.2. Course One

Course One is a theoretical technological undergraduate 400-level course offered by
the Division of Electronics, Electric Power and Telecommunications to the TEE cadets of
the Academy during their seventh semester of studies. The syllabus includes optical fibers,
optical sources (LED and laser), photodetectors (photodiodes), optical couplers, optical
filters, optical amplifiers, etc. This course assumes two prerequisite courses: applied electro-
magnetics and solid state electronic devices, as well as a strong mathematical background.

The recommended textbook is S.O. Kasap’s, Optoelectronics and Photonics, 2nd edition,
Pearson, 2013. There is also a supplementary recommended textbook: Optical Fiber Com-
munications, 3rd ed., by G. Keiser, McGraw Hill, 2000. In addition, instructor’s notes and
lecture slides are used. Oral grades result from a midterm exam. The educational policy of
the course remained unchanged for the duration of this study.

1.1.3. Course Two

Course Two is a mostly practical technological undergraduate 400-level course offered
by the Division of Computer Engineering and Information Science to the telecommunica-
tions and electronics engineering cadets during their seventh semester.

Course Two covers an introduction and application and transport layers. The textbook
used is J. F. Kurose and K. W. Ross’ Computer Networking: A Top-Down Approach, 7th edition.

For many years, oral grades were derived from homework assignments and a midterm
exam, based on the textbook problems or similar problems from the bibliography, with
the midterm exam counting for 70% of the oral grade. From Fall 2019 onward, oral grades
in Course Two have been derived from a set of alternative academic activities offered
throughout the semester, instead of exams or tests. These activities typically include
educational scenarios, lab exercises, simulations, etc. [1,3]. The set of activities changes
every year, to adapt to technological developments, as well as to the students’ interests.

The reasons behind this decision were the following:

• Course Two is a practical subject. Lab exercises and educational scenarios are invalu-
able for practical courses and enjoyable for the students. On the other hand, they
facilitate and deepen learning;

• Different students have different cognitive abilities; using a variety of alternative
activities caters for more learning styles;

• There were students who could not perform well in written exams due to stress,
although they were trying hard in the classroom. Assessment in Course Two should
have pluralism, in order to be fair.

After this change in the oral assessment policy, the teacher of Course Two noticed a
significant difference between oral grades and final examination scores; there were students
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who performed well on alternative academic activities but poorly on the final exam and
vice versa. This observation was one of the motivations for this research.

1.2. Motivation and Objective of This Work

One field of pedagogical research is investigating the relationship of oral grades to
final examination performance. If the two datasets are correlated, then oral grades could
serve as a predictor of final grades. If this is the case, then low oral grades could be used as
an early warning of student failure in the course.

It is important to identify at-risk students at an early stage of their academic career, so
that strategies to support them can be put into action [4–6]. Early prediction of student
course failure is important in our academy, and gives the potential to provide students
with timely feedback and support.

Since there is not enough research literature regarding the use of oral scores as a
predictor of final exam scores [7], this study represents a contribution towards this direction.

A second objective of this study was to investigate the association between different
oral assessment methods and the level of academic performance in the final written ex-
amination. Three oral assessment methods were considered: exam-based oral assessment
(Course One); oral assessment based on lab exercises and homework assignments, and a
midterm exam (Course Two period 1); and assessment based exclusively on alternative
activities (lab exercises and educational scenarios, Course Two period 2 [3]).

This comparative, quantitative, and correlational research used regression analysis to
construct predictive models for the Course One and Course Two final grades. Hence, the
research questions are as follows:

Research question 1: Can the oral grades based on homework assignments and a
midterm exam be used as a predictor of the final examination scores?

Research question 2: Can the oral grades based exclusively on alternative assessment
activities be used as a predictor of the final examination scores?

Consequently, the purpose of this research was to examine if there is any relationship
between the oral grades and final examination grades for undergraduate telecommunica-
tions and electronics engineering cadets in computer technology courses, in three different
cases: when the oral grades resulted from exams, when the oral grades resulted from
homework assignments and exams, and when the oral grades resulted from alternative
assessment activities.

2. Literature Review
2.1. Assessing Academic Achievement

Assessment is a necessary and continuous educational task that gives valuable in-
formation about a students’ progress, as well as valuable feedback to instructors about
their teaching practice. Various types of assessment methods measuring student academic
performance are available to educators.

Academic achievement depends on various factors including the students’ personality,
self-efficacy [8,9], intrinsic and extrinsic motivation [10], background, effort, age, and
cognitive skills, as well as the teacher’s emotional and academic support, and parental
and social support [11,12]. Teacher engagement and student motivation are main areas
of research. Students who perceive their instructors as more supportive achieve better
academic performance [13–20].

Grades are the most common means of assessing students’ academic performance [21].
Grading provides datasets of students’ academic achievements [22], facilitating storage,
ordering, comparison, etc. Students who complete the required weekly reading achieve
higher scores in course assessments. A multiple-test strategy was found to increase overall
test scores and promote learning [23,24]. Students’ ability to score well in exams depends
on several factors other than knowledge, including psychological and psycho-social factors,
as well as personal skills. A student’s motivation, background, self confidence, stress, and
time management skills affect their exam performance [23,25–28].
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Lack of proper guidance, a lack of or inappropriate recommendations, last minute
changes, and unfair means and policies severely affect students’ exam performance [29].
Stress is another important issue; students experience high levels of stress, which often leads
to anxiety before and during exams and ultimately affects their academic achievement [30].
Therefore, the effectiveness of tests is disputed [31]. Grade-based assessment can disorient
educational goals and may encourage students to cheat; many researchers criticize these
forms of exams as unfavorable and not constructive for students [32].

On the other hand, academic achievement has been identified as a high source of anxi-
ety within university students. Sometimes, the relationship between anxiety and academic
performance is indirect, because of the valuation of auto efficacy, meaning that people with
a low perception of auto-efficacy generate high levels of anxiety [33]. A significant inverse
relationship between test anxiety and course grades, in both undergraduate and graduate
students, has been reported in the literature [34–36].

2.2. Alternative Forms of Assessment

Fortunately, educators have a number of tools at their disposal to help students [10].
Alternative forms of assessment encourage behavior that results in increased learning,
information retention, and student achievement [2,27,37].

During alternative assessment activities, the instructor acts more as a facilitator than
as an evaluator, thus the students are not stressed. For this reason, from Fall 2019 onward,
oral grading in Course Two was based on alternative assessment activities rather than tests,
quizzes, or exams [37].

2.3. Related Work

Various data mining techniques such as classification and regression [38] have been
applied to build student performance prediction models. Classification is used when the
outcome variables are categorical (or discrete), while regression is used when the outcome
variables are numerical (or continuous) [39].

Classification is the most commonly applied data mining technique in higher education [40].
The most popular classification algorithms used to predict student performance are naive Bayes,
K-nearest neighbor, and decision tree [39]. Since the data in this research were numerical, we will
next focus on regression-based studies.

Aissaoui et al. [39] used multiple linear regression to determine the relationship be-
tween a dependent variable (students’ performance) and many independent variables.
Their dataset included 32 demographic attributes and 395 records. The aim of their work
was to select the most important among the attributes, in order to build a multiple regres-
sion linear model that enabled the prediction of the students’ final grade. After determining
the most important variables resulting from each method, they used those selected variables
to build multiple linear regression models. The most popular variables among the seven
models produced were mother’s education, mother’s job, father’s education, extra educa-
tional support, and going out with friends. Then they used R2 to measure the correlation
between the actual outcome values and the values predicted by each model. By comparing
the performances of the models, they found that the best model was the one created using
the “MARS” method [39].

Alabbad et al. [41] investigated the reliability of medical student logbook data for
assessing student’s performance and predicting outcomes of an objective standardized
clinical exam (OSCE) and a multiple-choice questions (MCQ) exam during surgery rotation.
Univariate linear regression analysis was used to evaluate the associations of the number
of clinical encounters and the number of clinical tutors with OSCE and MCQ scores. No
correlation between the volume of self-reported clinical encounters and exam scores was
found [41].

Davison and Dustova [7] used linear regression analysis to investigate predictive
relationships between standard examinations (standard true/false and multiple-choice
questions) and practical examinations (hands on system administration tasks) for under-
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graduate students for two courses of a computer technology program. The first course was
a 200-level course focusing on systems administration. The second course was a 300-level
computer technology course focusing on infrastructure services.

For the 200-level course, it was found that oral grades did not significantly predict the
written final exam scores. For the 300-level course, the linear regression analysis resulted in
a statistically significant predictive model. However, since in both cases R2 was close to 0,
they concluded that the resultant models were not a good fit, as they suffered from a high
unexplained variance [7].

Cui et al. report that for a science course, a predictive model, which was built on data
from one semester, was able to identify about 70% of students who failed the course and
70% of students who passed the course in another semester, with only LMS data extracted
from the first four weeks [6].

3. Methodology and Design

In this research, where the data were numerical, a linear regression analysis was used
to produce predictive models between oral grades and final exam scores. This design
type also allowed for hypothesis testing. The methodology selection was driven by the
research questions. For the above reasons, a quantitative methodology was selected,
utilizing a correlational study.

3.1. Research Hypotheses

• Null Hypothesis: The oral grades do not significantly predict the written final exam grades.
• Alternative Hypothesis: The oral grades do significantly predict the written final

exam scores.

3.2. Variables

In this study, the oral grades were used as the independent variable and the final
examination scores as the dependent variable. Correlation between variables does not
necessarily imply causality.

3.3. Environment and Control

Both courses met once a week for three academic hours (120 min), face-to-face, for
15 weeks during the fall semester (September to mid-January). The midterm written
examinations (where applicable) lasted three academic hours (2 h and 15 min). The final
written examinations were set at the end of each semester (January and June) and lasted
approximately 3 h; they were given on paper and were manually graded by the instructors.
Both midterm and final exams were supervised by an instructor or staff members. Grades
ranged from 0 to 100. In general, final exams are more difficult than midterm exams,
because they examine all (or a large part) of the syllabus, may combine issues from various
chapters, and typically contain more complex problems.

3.4. Data Collection

Both courses were offered in the fourth year of studies. After 2015, the TEE specializa-
tion was offered biennially, hence both courses were offered in Fall 2017, 2019, and 2021.

In this study, aggregated data from academic years 2014–2015, 2015–2016, 2017–2018,
2019–2020, and 2021–2022 were analyzed. In all cases, the whole class population partici-
pated (100%). For each case we considered, we took the most recent semesters. The data
encompassed three sets, each consisting of oral grades and final grades.

• Dataset 1 consists of 33 pairs of exam-based oral and final examination scores and
came from Course One Fall 2017, 2019, and 2021.

• In dataset 2, the oral grades resulted from homework assignments, lab exercises, and
a midterm exam, accounting for 70% of the oral grade; this came from Course Two
Fall 2014, 2015, and 2017, and consisted of 37 samples;
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• In dataset 3, the oral grades resulted exclusively from alternative assignment activities;
it came from Course Two Fall 2019 and 2021, and consisted of 24 samples. In this case,
there was no third semester, so the sample was smaller than for the other two cases.

Consequently, the purpose of this research was to investigate possible relationships
between oral grades and final grades in these three datasets. The grades were analyzed in
terms of correlations and score prediction. Next, three predictive models were created: one
for Course One, and two for Course Two.

3.5. Demographics

Sixty-one students participated in this study. The students were in their fourth year of
studies, about 21 years old, 87% males and 13% females.

The teachers of both courses are senior full-time professors, men, with over 25 years
of experience, having taught these courses for at least 16 years.

3.6. Data Analysis

The grades were analyzed in terms of statistics and correlations using the Calc software
package (part of LibreOffice version 6), and Excel’s Data Analysis ToolPak (part of MS
Office 2021). The results were verified in Matlab, Octave, and PSPP, a free program for
statistical analysis of sampled data (https://www.gnu.org/software/pspp, accessed on
10 March 2023). The resultant predictive models were derived from the analysis.

The metrics used to evaluate the models were the correlation R, R squared (R2), the
standard error, the ANOVAs, the p-value, the root mean squared error (RMSE), etc. [7,39].

The correlation coefficient R, or Pearson’s r, is a measure of the strength and direction of
the linear relationship between two variables; it is defined as the covariance of the variables
divided by the product of their standard deviations and represents the relationship between
two variables.

When R is close to zero, there is no relationship between the variables. When it is
close to 1 or −1, there is a strong relationship between the two variables. The square of the
correlation coefficient R2 is often used instead of R. In an ideal model, R2 should be close to
1. An R2 close to 0 indicates no relationship.

The mean squared error (MSE) measures the average of the squares of the errors
between the real and estimated final grades. The square root of the MSE, called RMSE, is
often used instead. The lower the MSE and RMSE, the better the forecast.

The standard error is the average distance of the observed values from the regression line.
Analysis of variance (ANOVA) determines the influence of the independent variable

on the dependent variable in a regression study.
Significance F is the p-value associated with the F-test of overall significance. This

test determines whether a model does a better job explaining the dependent variable’s
variability than a model with no independent variable, and informs us whether or not the
regression model is statistically significant. Here, we assumed a confidence interval of 95%.
Thus, if the p-value was less than 0.05, there would be a statistically significant association
between the oral and final grades.

An outlier is a point far away from the regression trend line. Such cases are possible
and may be due to various factors, including stress, poor planning, negligence, indifference,
psychological factors, or even external causes. The presence of even one outlier in a small
sample (such as ours) can dramatically deteriorate or even nullify a model.

4. Results

From our experience, we anticipated the oral activities statistics (maximum, minimum,
and mean) would be higher than the final exam statistics, because the problems in the final
exam are typically more complicated than those of the midterm exam.

Using linear regression, models predicting the final examination score (dependent
variable y) using the oral grades as a predictor (independent variable x) were constructed

https://www.gnu.org/software/pspp
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for each semester. The models had the form of a linear equation, where α is the coefficient
and β is the constant (or intercept) term:

y = α · χ + β (1)

4.1. Course One

In Course One, the oral grades result from a midterm exam. Next, the collective results
for the three most recent semesters are presented (Fall 2017, Fall 2019, and Fall 2021).

The dataset consisted of 33 pairs of oral–final grades. The resulting model had the
following characteristics (Table 1):

Table 1. Aggregate statistics for Course One (N = 33).

Statistics Oral Final

Maximum 93 95
Average 61.76 59.33

Minimum 40 15
Spread 53 80

Standard deviation 15.47 17.74
Variance 239.46 314.71

MSE 150.65197
RMSE 12.27404

The average score for the midterm exam (oral grade) was 61.76%, while the average
score for the final exam was 59.33%, i.e., very close. The standard deviation for the
midterm exam was 15.47%, while the standard deviation for the final exam was 17.74%, i.e.,
comparable. Moreover, the maximum grades were very close, but the variances presented
some difference.

The regression equation is presented below (Equation (2)).

y = 0.82772 · χ + 8.21556 (2)

The predictive model for Course One is presented below in Figure 1. Notice the
existence of outliers.

Figure 2 describes statistically the produced linear regression model for Course One.
The regression statistics table provides statistical measures of how well the model fits

the data. We can see that R2 = 0.521295, which agrees with Figure 1.
The R-squared value of 0.521295 indicates that our model accounted for about 52.1%

of the dependent variable’s variance.
The standard error of the regression indicates the typical size of the residuals. This

statistic shows how wrong the regression model was on average. We want lower values,
because this signifies that the distances between the data points and the fitted values are
smaller. Here, the standard error was 12.663785, which is rather large.

In the ANOVA table, df means degrees of freedom. SS is the sum of squares (4971.515017
in this case; see second line), and MS is the mean of squares produced as SS/df, where df is
31 here.

F is the significance, which is very good in this case, meaning that our test result was
statistically significant, so the model was valid.

Table 2 summarizes the produced linear regression model for Course One, obtained
using the Data Analysis ToolPak in Excel.

The regression equation was statistically significant (2.108099 ×10−6). However, R2

was equal to 0.506, rather moderate. The standard error of the estimate was also moderate
(12.66). These facts indicate that the produced model for Course One was significant but
had a moderate accuracy.
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Figure 1. Linear model and R2 for Course One.

Figure 2. Course One linear regression model statistics.

Table 2. Course One linear regression model description.

Observations 33
R 0.722007

R Square 0.505853
Sum of Squares (SS) 4971.515017
Mean Square (MS) 160.371452

Standard Error 12.663785
Significance 2.108099 ×10−6

4.2. Course Two

In Course Two, we consider two different cases, according to the way oral grades are
derived:

1. Period 2014–2017, including three semesters: Fall 2014, Fall 2015, and Fall 2017. A
series of assignments are offered throughout the semester, contributing 30% to the
oral grade. The remaining 70% of the oral grade comes from a midterm exam.

2. Period 2017–2019, including two semesters: Fall 2019 and Fall 2021; the oral grades
are derived from a series of alternative assessment activities.
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4.2.1. Period 2014–2017

The oral grades and final exam statistics for Course Two are presented in Table 3. The
maximum, average, and minimum of oral grades were superior to those of the final exam,
as expected.

Table 3. Oral and final grades statistics for Course Two 2014–2017 (N = 37).

Statistics Oral Final

Maximum 100 98
Mean 82.29 75.36

Minimum 38.5 44.5
Spread 61.5 53.5

Standard Deviation 16.43 14.92
Variance 126.17 135.66

MSE 89.307945
RMSE 9.450288

The above results are considered normal, according to our educational policy. In
addition, the oral and final scores are comparable across all criteria (maximum, mean,
minimum, standard deviation, etc.).

The regression equation (e.g., predictive model) for Course Two is presented below
(Equation (3) and Figure 3).

y = 0.606132 · χ + 28.267864 (3)

Figure 3. Linear model and R2 for Course Two 2014–2017.

Figure 4 describes statistically the produced linear regression model.
Table 4 summarizes the produced linear regression model for Course Two, period

2014–2017, obtained by the Data Analysis ToolPak of Excel.
The regression equation was statistically significant (0.00014528). However, R2 was

equal to 0.342, rather small. The standard error of the estimate was not bad (9.7). These facts
indicate that the produced model for Course Two was significant but had a medium accuracy.
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Figure 4. Course Two 2014–2017 model statistics.

Table 4. Course Two 2014–2017 linear regression model description.

Regression Statistics

Observations 37
R 0.584540

R Square 0.341687
Sum of Squares (SS) 3304.393978
Mean Square (MS) 94.411257

Standard Error 9.716546
Significance 0.00014528

4.2.2. Period 2019–2021

The oral grades of Course Two Fall 2019 and Fall 2021 resulted exclusively from
alternative assessment activities including lab exercises, educational scenarios [3], even the
attendance of a free MOOC [42].

Oral grades and final exam statistics are presented in Table 5. The maximum and
average of the oral grades were superior to those of the final exam, as expected. However,
the spread, standard deviation, and variance of the oral grades were superior to those of the
final grades, while the oral minimum was lower than the final minimum. This result is in
contrast with Course One and Course Two, period 2014–2017, where the oral grades were
derived from a midterm exam by 100% or 70% respectively. This means that the alternative
assessment made a difference.

Table 5. Oral and final grade statistics for Course Two 2019 and 2021 (N = 24).

Statistics Oral Final

Maximum 100 98
Average 82.29 75.36

Minimum 38.5 44.5
Spread 61.5 53.5

Standard deviation 16.43 14.92
Variance 325.89 227.22

MSE 203.476560
RMSE 14.264521

The regression equation (e.g., predictive model) for Course Two Fall 2019 and Fall
2021 is presented below (Equation (4) and Figure 5).

y = 0.269935 · χ + 54.396116 (4)
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Figure 5. Linear model and R2 for Course Two 2019 and 2021.

Figure 6 summarizes the produced linear regression model, obtained using the Data
Analysis ToolPak in Excel.

Figure 6. Course Two 2019–2021 model statistics.

Table 6 describes statistically the produced linear regression model for Course Two,
period 2019–2021.

Table 6. Course Two 2019–2021 linear regression model description.

Regression Statistics

Observations 24
R 0.323271

R Square 0.104504
Sum of Squares (SS) 4883.437435
Mean Square (MS) 221.974429

Standard Error 14.898806
Significance 0.1233494056
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The generated model was statistically insignificant and exhibited poor characteristics
(e.g., a small R square and large standard error). This result was expected because, as
we have already mentioned, the observation that triggered this research was that there
were students with a low overall performance who excelled in the alternative assessment
activities, but also students with a good overall performance who performed poorly in the
alternative assessment activities. The rule of thumb in such cases is the existence of points
in the upper left and lower right quadrants of the regression graph(in this case, Figure 5).

4.3. Impact of Results on Hypotheses

The models produced for Course One and Course Two 2014–2017 were valid and, to
some degree, accurate; consequently, they could be used to predict final grades. Therefore,
the null hypothesis could be rejected for these courses; and the alternative hypothesis holds.
Thus, exam-based oral grades do significantly predict written final exam scores.

On the other hand, the model produced for Course Two 2019 & 2021 was statistically
insignificant and could not be used to predict final grades. Therefore, the null hypothesis
holds in this case: oral grades based on alternative assessment activities do not predict
written final exam scores.

5. Discussion

The oral grades in Course Two 2014–2017 are based primarily on the midterm exam
(70%); this was the reason behind the good characteristics of the Course Two Fall 2017
model (since we found that exam-based oral grades can predict final exam grades).

The oral grades of Course Two Fall 2019 and Fall 2021 resulted from alternative
assessment activities instead of midterm exams; as a result, the generated models were
invalid, in the sense that they could not predict the final exam grades. Course Two Fall 2019
& 2021 presented almost no correlation between the oral and final grades (R2 = 0.1045).

The Course One model showed that, under certain conditions, it was possible to
predict final exam scores from oral scores. In this case study, these prerequisites seemed
to be:

1. Similar methods of deriving oral and final grades (that is, exams).
2. Consistent educational policy (same teacher, same book, etc.).
3. Consistent student behavior. When students lose their motivation or have a weak

background or when something goes wrong and they cannot perform regularly,
outliers occur which deteriorate or even cancel the model.

Over time, with the aggregation of additional data, and provided that the other critical
factors of the educational process remain stable, the models are expected to improve and
stabilize; therefore, it is imperative to maintain historical data. When important factors
change across semesters, new models must be constructed. If we have a lot of observations,
it is possible, as well as acceptable, to remove extreme samples, in order to improve the
model. A statistical estimator that is often "tweaked" to obtain the best possible model
is the MSE (mean squared error); the smaller the MSE, the closer we are to finding the
line of best fit [43]. For example, we can “tweak” the Course One model by removing the
samples which generated the largest MSE between the prediction and final grade, to obtain
a better model. The improved predictive model and regression equation for Course One
are presented below (Figure 7).

Figure 8 describes statistically the improved linear regression model for Course One,
obtained after removing the four worst samples, and Table 7 presents the regression statistics.

The produced model is significantly improved in terms of R2, standard error, signifi-
cance, etc., and hence, more accurate. This being the case, low oral grades can be used as
an early warning of student failure in the final exam.

On the other hand, the failure of the model produced for Course Two period 1 is
attributed to the fact that the alternative assessment activities used to produce the oral
grades were different in nature and skills from the problems used in the final exam.
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Figure 7. Improved linear model and R2 for Course One.

Figure 8. Course One improved linear regression model statistics.

Table 7. Course One linear regression improved model description.

Regression Statistics

Observations 29
R 0.858692

R Square 0.737353
SS 1818.226012
MS 67.341704

Standard Error 8.206199
Significance 2.539482 × 10−9

The model produced for Course Two period 1 is different from that of period 2. The
difference between the two cases was attributed to the change in the educational policy
concerning oral assessment.

The results presented here are a case study for engineering classes of the Academy,
which typically have few students. In such cases it is difficult to design accurate prediction
models, because the unpredictable performance of even one student can affect a large
percentage of the class statistics and may invalidate the model. We expect larger samples
would produce more reliable models.

This is a pioneer study concerning the Higher Education Military Academies of Greece.
Its value lies in the fact that, in courses where oral grades are based on exams, the generated
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models per course could be used primarily as prediction tools, allowing the educators
and dean to identify students at risk of failing the exam early and intervene in order to
help these students improve their academic performance. The students themselves could
perceive any individual deficiency in the course in time, in order to avoid failure. In this
case, early awareness may bring about less accumulated stress, because the students would
have more time to study consciously to avoid failure. In courses with prerequisites or in
colleges with specific restrictions, where students are permanently expelled if they fail
several times in a course or miss the academic year due to inadequate performance, a
prediction tool would be particularly useful.

In addition, this study demonstrates that alternative assessment helps students who
perform poorly in exams to learn practically. This was confirmed in an interview with one
such student after his graduation [44].

For Course Two Fall 2019 and Fall 2021, the lack of correlation between oral and final
exam grades was attributed to the following reasons:

1. Learning activities that contributed to the oral grades tested different skill sets from
the final exams. Therefore, students’ ability to execute lab exercises and homework
assignments was not a good predictor of their ability to solve the problems in the
final exam.

2. The students’ performance changed under the different conditions that applied in
the alternative activities and the final written exam and depended to a large extent
on their learning style; some learning styles are favored in alternative assessment
activities, while other learning styles are favored in written exams [3,44,45].

Different Courses, Different Models

Our findings also indicate that different courses produce different models; this is
reasonable, since different courses can vary a great deal in terms of course contents, learning
objectives, educational policy, methods of evaluation and assessment, etc. Several changes
in critical parameters, such as different instructors, teaching methods, books, etc., will
greatly affect the model credibility. Each course tends to have unique characteristics that
affect its predictive model [6]. Moreover, the difficulty levels of different courses vary
considerably, so we should not expect models from a difficult course to apply to a relatively
easy course and vice versa. Our results indicate that a general model cannot address the
complexity of all courses, because learning objectives, content difficulties, educational
policy, activities and assessments, exam difficulty, etc., vary greatly. The use of a general
model would unavoidably compromise the model accuracy in predicting student course
failure [6].

6. Conclusions

This research study explored the relationships between oral grades and final exami-
nation grades for two undergraduate 400-level engineering courses, offered in a Hellenic
military academy during the period 2014–2022.

A quantitative, correlational approach utilizing linear regression analysis to describe
possible relationships between oral and final grades was employed. The results indicated
that, under certain conditions, prediction of the final examination scores from the oral
grades was possible; these conditions were as follows: first, the assessment mode produc-
ing the oral and final grades being written exams; and second, the other factors of the
educational process (except the students of the course) remaining invariant. The credibility
of the predictive models was verified. We also found that the assessment method used to
produce the oral grades greatly affected the performance (validity) of the model. Hence, we
estimated that it would not always be possible to produce predictive models. Our findings
are in agreement with the results of other researchers [6,7,41].

The main findings of this study are summarized as follows:
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• Under the assumption that the main factors of the teaching process such as the
instructor, objectives, textbook, teaching style, assessment policy, etc., remain constant,
it is possible to produce reliable predictive models;

• A model changes when one or more critical factor affecting the teaching process change;
• Different courses produce different models;
• When alternative assessment was used to produce the oral grades, it was impossible

to produce statistically significant models;
• It is useful to keep historical data per course, in order to build a predictive model.

Our results also provide a deeper insight into alternative assessment and could assist
educators in choosing methods to enrich their oral assessment policy [44].

This research was exploratory in nature and was specifically limited to the under-
graduate telecommunications and electronics engineering cadets of the Academy and the
specific courses, as offered by their instructors. Further research is needed to identify the
conditions that would allow us to generalize our findings.
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