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Abstract: The constant use of alcoholic beverages can deregulate serotonin levels, affecting neurotrans-
mitters and triggering symptoms of anxiety. In this context, the objective of this work was to evaluate
the anxiolytic potential and possible action mechanisms of the natural compound amentoflavone
against the deleterious effects caused by alcohol withdrawal on the behavior of adult zebrafish
(aZF). The experiments showed that amentoflavone did not change locomotion and did not cause
toxicity in aZF during up to 96 h of analysis, with a median lethal concentration (LC50) greater than
1.0 mg/mL. The reversal of anxiety by pretreatment with granisetron suggested that the anxiolytic ef-
fect of amentoflavone is dependent on serotonergic 5-HT3A/3B receptors. Furthermore, amentoflavone
reversed anxiety due to flumazenil pretreatment, suggesting a dependence on the GABAA receptor.
The three concentrations of amentoflavone tested were effective in treating anxiety resulting from
alcohol withdrawal. In silico analysis validated the in vivo results, supporting the idea that the inter-
action of amentoflavone with the protein occurs in a more stable manner than reference compounds.
Amid growing interest in natural alternatives to treat anxiety disorders, amentoflavone is a potential
candidate for a new anxiolytic compound that acts specifically on the 5HT3A/3B and GABAergic
serotonergic pathways.

Keywords: amentoflavone; anxiolytic; alcohol abstinence; 5-HT3A/3B; GABAA; molecular modeling

1. Introduction

Alcohol (EtOH) is a central nervous system (CNS) depressant, which means that its
consumption can initially cause a feeling of relaxation and relief from anxiety. According to
the Brazilian Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone
Survey (VIGITEL) in 2021, a total of 18.4% of the respondents were classified as abusive
drinkers. Among men, this percentage was 25.6%, down from 27.0% in 2010. Alcohol
intake among women, however, increased during this period, from 10.5% to 12.7% [1].
It is worth remembering that in 2021, the world was struck by the COVID-19 pandemic.
Queiroga et al. [2] reported that the increase in alcohol consumption, especially among
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young people, at the beginning of the pandemic was associated with factors such as fear of
the disease, panic, insecurity and stress resulting from isolation measures. The researchers
emphasized the importance of early intervention in cases of alcohol dependence to prevent
the development of chronic alcoholism.

According to the World Health Organization (WHO), alcohol consumption can cause
or contribute to more than 200 diseases and injuries. It is associated with a higher risk of
developing health problems such as mental and behavioral disorders, including alcohol
dependence, serious illnesses such as liver cirrhosis, some types of cancer and cardiovas-
cular disease, as well as injuries resulting from violence and traffic accidents. Worldwide,
3 million deaths a year result from the harmful use of alcohol, accounting for 5.3% of all
deaths [3].

The chronic and abusive use of alcohol can lead to a vicious cycle: as the body develops
tolerance to the anxiolytic effect of alcohol, the organism requires ever-increasing doses to
obtain the same relief. Furthermore, excessive alcohol consumption can lead to physical
and mental health problems, further aggravating anxiety [4]. There are different scales and
assessment instruments used to measure anxiety levels in patients experiencing alcohol
withdrawal. In general, anxiety symptoms can be mild, moderate or severe and may
include feelings of nervousness, restlessness, excessive worry, difficulty concentrating,
muscle tension and irritability, among others [5]. In some more serious cases, alcohol
withdrawal can lead to more intense anxiety and can even evolve into generalized anxiety
disorder [6].

Anxiety generated by alcohol withdrawal is related to the interaction with GABAergic
channels in the central nervous system. During chronic alcohol consumption, GABAA
receptors become less sensitive, resulting in a reduction in the inhibitory activity of the
neurotransmitter GABA (aminobutyric acid). When ceasing consumption, there is a lack of
alcohol’s sedative effect on GABAA receptors, leading to neuronal hyperexcitability and
withdrawal symptoms, such as anxiety, irritability and insomnia [7,8]. The serotonergic
pathway is associated with alcohol dependence, playing a key role in EtOH consumption,
a vicious cycle, and recidivism [9]. Acutely, EtOH increases the release of serotonin (5-HT)
in the CNS [10], with reports of a correlation between 5-HT release in the brain and specific
behaviors (for example, fear, anxiety and aggression) [11].

Anxiolytic activity is characterized by the ability to reduce anxiety and the symptoms
associated with it, such as tension, fear and excessive worry. In the context of alcoholism,
anxiety can be a triggering or aggravating factor. Many people turn to alcohol as a way to
cope with feelings of anxiety, seeking temporary relief from symptoms [12].

In this context, alcoholism treatment may include anxiolytic approaches as part of a
broader rehabilitation strategy. Drugs such as disulfiram (DSF), naltrexone and acamprosate
(calcium acetyl homotaurinate) can play a crucial role in reducing alcohol cravings and
consumption and maintaining abstinence by acting as adjuvants for addicted people, but
all of these drugs have adverse side effects [13].

In bioactivity tests by our research groups, we used adult zebrafish as a model or-
ganism to replace the use of rodents to screen new bioactive compounds with anxiolytic
action, including extracts from medicinal plants, as well as synthetic substances originating
from natural products. In such studies, we also investigated the mechanism of anxiolytic
action via the GABAergic system, using flumazenil as a GABAA antagonist, as well as
the medications granisetron (Gstn; 5-HT3A/2C antagonist), pizotifen (Piz; 5-HT1 and
5-HT2A/2C antagonist) and cyproheptadine (Cypro; 5-HT2A antagonist) as antagonists of
the serotonergic system [14].

Amentoflavone (AMT) is a biflavonoid obtained by the oxidative coupling of two
molecules of apigenin, resulting in a bond between the C-8′′ positions of the chromene ring
(benzene ring fused to a pyran ring) of one molecule and the C-3′ of the hydroxyphenyl
ring of the other molecule, 3′,8′′-biapigenin [15] (Figure 1).
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Figure 1. The chemical representation of the structure of the biflavonoid amentoflavone (AMT). 

Amentoflavone has a wide range of biological activities, including anti-
inflammatory, antioxidant and antimicrobial properties and the regulation of metabolism, 
neuroprotection, radioprotection, musculoskeletal protection, antidepressant activity and 
the promotion of resistance to various types of cancer. This investigation covers the 
bioavailability and drug delivery of amentoflavone, the molecular mechanisms 
underlying its activities, the simulation of molecular coupling through the in silico 
approach and the demonstration of the anti-SARS-CoV-2 effect of amentoflavone [16]. 

In previous studies, amentoflavone improved anxiety symptoms through the 
modulation of mTOR signaling, alleviating Aβ25-35-induced anxiety symptoms of animals 
in a rat model of Alzheimer’s disease [17]. These aspects highlight the importance of this 
molecule in exploring new approaches, particularly as an anxiolytic in zebrafish. This 
model has been increasingly used instead of mice, rats or other non-human mammals, 
due to the global strategy known as NC3Rs (Replacement, Reduction and Refinement, 
originating in the United Kingdom), which consists of reducing the use of animals in 
experimentation through replacement by other models and the refinement of research 
[18].  

Some studies have suggested that biflavonoids may also have positive effects on the 
immune system, helping to strengthen the body’s response to viral and bacterial infections 
[19,20]. Additionally, they can help regulate blood sugar levels, lower cholesterol and 
prevent blood clots, which can help prevent cardiovascular disease [21]. 

Therefore, the present study aimed to investigate the anxiolytic potential of 
amentoflavone in vivo and in silico, to ascertain a possible effect for the treatment of 
anxiety resulting from alcohol withdrawal, as well as defining the mechanisms of action 
involved. 

2. Methodology 
2.1. Obtaining Amentoflavone 

First, a leaf extract of Ouratea fieldingiana (Gardner) Engl was prepared through 
maceration with ethanol–water. The botanical identification of Ouratea fieldingiana was 
performed by the botanist Luiz Wilson Lima-Verde, and a specimen was deposited in the 
Prisco Bezerra herbarium collection under number 62,392 on 3 April 2019. 

The isolation of amentoflavone was carried out from this extract using silica gel 
column chromatography. The column was eluted with hexane, chloroform, ethyl acetate 
and methanol in mixtures having increasing polarity. The fractions eluted with ethyl 
acetate were combined, and the solid material obtained was crystallized to obtain 
amentoflavone, whose structure was characterized by NMR spectroscopy [15].  
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Amentoflavone has a wide range of biological activities, including anti-inflammatory,
antioxidant and antimicrobial properties and the regulation of metabolism, neuroprotection,
radioprotection, musculoskeletal protection, antidepressant activity and the promotion
of resistance to various types of cancer. This investigation covers the bioavailability and
drug delivery of amentoflavone, the molecular mechanisms underlying its activities, the
simulation of molecular coupling through the in silico approach and the demonstration of
the anti-SARS-CoV-2 effect of amentoflavone [16].

In previous studies, amentoflavone improved anxiety symptoms through the modula-
tion of mTOR signaling, alleviating Aβ25-35-induced anxiety symptoms of animals in a rat
model of Alzheimer’s disease [17]. These aspects highlight the importance of this molecule
in exploring new approaches, particularly as an anxiolytic in zebrafish. This model has
been increasingly used instead of mice, rats or other non-human mammals, due to the
global strategy known as NC3Rs (Replacement, Reduction and Refinement, originating in
the United Kingdom), which consists of reducing the use of animals in experimentation
through replacement by other models and the refinement of research [18].

Some studies have suggested that biflavonoids may also have positive effects on
the immune system, helping to strengthen the body’s response to viral and bacterial
infections [19,20]. Additionally, they can help regulate blood sugar levels, lower cholesterol
and prevent blood clots, which can help prevent cardiovascular disease [21].

Therefore, the present study aimed to investigate the anxiolytic potential of
amentoflavone in vivo and in silico, to ascertain a possible effect for the treatment of anxiety
resulting from alcohol withdrawal, as well as defining the mechanisms of
action involved.

2. Methodology
2.1. Obtaining Amentoflavone

First, a leaf extract of Ouratea fieldingiana (Gardner) Engl was prepared through macer-
ation with ethanol–water. The botanical identification of Ouratea fieldingiana was performed
by the botanist Luiz Wilson Lima-Verde, and a specimen was deposited in the Prisco
Bezerra herbarium collection under number 62,392 on 3 April 2019.

The isolation of amentoflavone was carried out from this extract using silica gel
column chromatography. The column was eluted with hexane, chloroform, ethyl acetate
and methanol in mixtures having increasing polarity. The fractions eluted with ethyl acetate
were combined, and the solid material obtained was crystallized to obtain amentoflavone,
whose structure was characterized by NMR spectroscopy [15].
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2.2. Animals

Wild adult zebrafish (Danio rerio), aZF, of both sexes aged 60–90 days, with lengths
of 3.5 ± 0.5 cm and weight 0.4 ± 0.1 g were obtained from Agroquímica Comércio de
Produtos Veterinários Ltd.a, a supplier in Fortaleza (Ceará, Brazil). Groups of 40–50 fish
were acclimatized in a 9 L glass aquarium at room temperature (26 ± 2 ◦C) for 24 h,
containing dechlorinated water (ProtecPlus®) and air pumps with submerged filters, at
25 ◦C and pH 7.0, with a circadian cycle of 14:10 h light/dark. The fish received feed ad
libitum 24 h before the experiments. After the experiments, the fish were sacrificed with
cold water (2–4 ◦C) for up to 2 min until the loss of opercular movements occurred [22].
All experimental procedures were approved by the Animal Use Ethics Committee of State
University of Ceará (CEUA-UECE), under protocol no. 05299177/2021.

2.3. Drugs or Pharmacological Treatments

Granisetron hydrochloride was obtained from CorePharma, LLC (Middlesex, NJ,
USA). Pizotifen maleate was procured from Central Manipulation Pharmacy (São Paulo,
Brazil). Cyproheptadine was acquired from Evidence Soluções Farmacêuticas (Fortaleza,
Brazil). Fluoxetine was obtained from Eli Lilly (Indianapolis, IN, USA). Flumazenil was
purchased from Roche Pharmaceutical (Welwyn Garden City, UK). Diazepam was from
Sigma-Aldrich Corp. All other chemicals were bought from Dinamica (São Paulo, Brazil).

2.4. General Protocol

The tests were carried out based on the methods proposed by Magalhães et al. [23]
and Ekambaram et al. [24]. On the day of the experiments, aZF were randomly selected,
transferred to a damp sponge and treated with the test or control samples, intraperitoneally
(i.p.) or orally (p.o.). They were then placed individually in glass beakers (250 mL)
containing 150 mL of resting aquarium water. For intraperitoneal (i.p.) treatments, an
insulin syringe (0.5 mL; UltraFine® BD) with a 30 G needle was used. For oral (p.o.)
treatments, a 20 µL variable automatic pipette was used. The behavior of the animals was
recorded by calibrated and blinded analysts. The activities scheme can be found in the
Summary of Protocols (Figure 2).
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2.5. Anxiolytic-Like Effect

The anxiolytic-like effect was explored by the Light and Dark Test, which was carried
out in a glass aquarium (30 × 15 × 20 cm) with a light and a dark zone. The aquarium
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was filled with 3 cm of tap water, pretreated with antichlorine and drug-free, as being
shallow restricts the aquarium from living, which is a well-established anxiety behavior in
a new environment [25]. The animals (n = 6/group) were treated intraperitoneally (i.p.)
with 20 µL of AMT (0.01 or 0.1 or 1.0 mg/mL) or diazepam (DZP; anxiolytic control [26];
10 mg/mL) or vehicle (3% DSMO; negative control). A group of animals without treatments
was included (naive). Thirty minutes after intraperitoneal treatments, the animals were
individually added to the light zone of the aquarium, and the anxiolytic-like effect was
quantified as the time(s) of permanence in the light zone, during 5 min of analysis.

2.5.1. The Involvement of the Serotonergic System

The involvement of the serotonergic system in the anxiolytic effect of the test samples
was explored in the Light and Dark Test, following the method of Benneh et al. [27]. Antag-
onist doses were standardized by Gonçalves et al. [25]. Initially, the animals (n = 6/group)
were treated with 20 µL of AMT (0.01 mg/mL; i.p.), fluoxetine (Flx; 1.25 × 10−3 mg/mL;
i.p.), cyproheptadine (Cypro; antagonist 5-HT2A [28]; 0.8 mg/mL; p.o.), (Piz; 5-HT1 and
5-HT2A/2C antagonist [29]; 0.8 mg/mL; p.o.) or granisetron (Gst; antagonist of 5-HT3A/2C;
5-HT3B [30]; 0.5 mg/mL; p.o.). Subsequently, they were pretreated with cyproheptadine
(Cypro; 5-HT2A antagonist; 0.8 mg/mL; p.o.), pizotifen (Piz; 5-HT1 and 5-HT2 antagonist;
HT2A/2C (0.8 mg/ mL; p.o.) or granisetron (Gst; 5-HT3A/3B antagonist; 0.5 mg/mL; p.o.)
that was administered 15 min before treatment with 20 µL of AMT (0.01 mg/mL; i.p.) or
fluoxetine (Flx; 1.25 × 10−3 mg/mL; i.p.). A vehicle-treated group and an untreated group
were included. After treatments, the animals were placed in the light zone of the aquarium,
and the anxiolytic effect was measured by the time spent in this area for 5 min. A group
of vehicle-treated (3% DSMO; 20 µL; i.p.) and untreated (naive) animals were included.
After 30 min of intraperitoneal treatments and 1 h of oral treatments, the animals were
individually placed in the light zone of the aquarium, and the anxiolytic-like effect was
quantified as the time(s) spent in the light zone, during 5 min of analysis.

2.5.2. The Involvement of the GABAergic System

The involvement of the GABAergic system of the lowest effective concentration of the
samples was explored in the Light and Dark Test, described above, after pretreatment with
flumazenil, a GABAA antagonist, according to the method proposed by Benneh et al. [27].
Initially, the animals (n = 6/group) were treated with 20 µL of AMT (0.01 mg/mL; i.p.)
or diazepam (DZP; 10 mg/mL; i.p.) or flumazenil (Fmz; 0.1 mg/mL; i.p.). In another
experiment, the animals (n = 6/group) were pretreated with flumazenil (Fmz; 0.1 mg/mL;
20 µL; i.p.) 15 min before intraperitoneal treatment with AMT (0.01 mg/mL; 20 µL) or
diazepam (DZP; 10.0 mg/mL). Groups of vehicle-treated (3% DSMO; 20 µL; i.p.) and
untreated (naive) animals were included. After 30 min of intraperitoneal treatments, the
animals were individually placed in the light zone of the aquarium, and the anxiolytic-like
effect was quantified as the time(s) spent in the light zone, during 5 min of analysis.

2.5.3. Anxiety Induced by Alcohol Withdrawal

To evaluate the treatment of alcohol withdrawal-induced anxiety as described by
Ferreira et al. [14], yellow cane spirit (ACAA; Ypioca®) was used as a source of ethanol
(EtOH 0.38, 3.8 or 38%; v/v), which is not toxic to aZF, as reported by Ferreira et al. [14].
Animals (n = 6/group) were orally (p.o.) or intraperitoneally (i.p.) treated with 20 µL as
described in groups (G) below:

Group 1—1st to 11th day: Naive (without treatments);
Group 2—1st to 11th day: Vehicle—3% DMSO (i.p.);
Group 3—1st to 5th day: ACAA (p.o); 6th to 11th without ACAA treatments;
Group 4—1st to 5th day: ACAA (p.o); 6th to 10th without ACAA treatments; 11th day:
DZP (10 mg/mL; i.p.);
Group 5—1st to 5th day: ACAA (p.o.); 6th to 10th without ACAA treatments; 11th day:
AMT (0.01 mg/mL; i.p.);
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Group 6—1st to 5th day: ACAA (p.o.); 6th to 10th without ACAA treatments; 11th day:
AMT (0.1 mg/mL; i.p.);
Group 7—1st to 5th day: ACAA (p.o.); 6th to 10th without ACAA treatments; 11th day;
AMT (1.0 mg/mL; i.p.).

Thirty minutes after intraperitoneal treatments, the animals were submitted to the
Light and Dark Test [25], as previously described, to characterize the anxiolytic-like effect
for 11 consecutive days.

2.6. Locomotor Activity (Open Field Test)

The open field test [23] was carried out to evaluate the presence or absence of a
sedative effect of the tested samples. Animals (n = 6/group) were treated intraperitoneally
(i.p.) with 20 µL of AMT (0.01 or 0.1 or 1.0 mg/mL) or diazepam (DZP; sedative control;
10 mg/mL) or vehicle (3% DSMO). A group of animals without treatments was included
(naive). Thirty minutes after intraperitoneal treatments, the animals were placed in Petri
dishes (100 × 15 mm) containing the same water as in the aquarium, marked with four
quadrants, and locomotor activity (LA) was analyzed by counting the number of line
crosses, for 0–5 min.

2.7. Anticonvulsant Activity

The anticonvulsant effect of the samples was tested according to the method pro-
posed by Siebel et al. [31]. The animals (n = 6/group) were treated intraperitoneally (i.p.)
with 20 µL of AMT (0.01 or 0.1 or 1.0 mg/mL) or diazepam (DZP; anticonvulsant control;
10 mg/mL; i.p.) or vehicle (3% DSMO; negative control). Thirty minutes after intraperi-
toneal treatments, the animals were individually immersed in a solution of pentylenete-
trazole (PTZ; 30 mM). Seizure-like behavior was characterized as clonus-like seizures,
followed by the loss of posture, when the animal fell to its side and remained motionless
for 1–3 s. The specific doses of the antagonists were chosen as described in the literature by
Gonçalves et al. [32].

2.8. Acute Toxicity (96 h) against Adult Zebrafish

The acute toxicity study was carried out against adult zebrafish according to the
standard method described by the Organization for Economic Cooperation and Develop-
ment [33] to determine LC50–96h. Animals (n = 6/group) were treated intraperitoneally
(i.p.) with 20 µL of AMT (0.01 or 0.1 or 1.0 mg/mL) or vehicle (3% DSMO; control). After
the treatments, aZF mortality was evaluated every 24 h. After 96 h, the number of dead
fish in each group was recorded, and the lethal concentration capable of killing 50% of
the animals (LC50) was determined using the trimmed Spearman–Karber mathematical
method with a confidence interval of 95% [34].

2.9. Statistical Analysis

The results were expressed as mean values ± the standard error of the mean for each
group of 6 animals. After confirming the normal distribution and homogeneity of the data,
the differences between the groups were submitted to an analysis of variance (one-way
ANOVA), followed by the Tukey test. All analyses were performed using GraphPad Prism
v. 5.01. The level of statistical significance was set at 5% (p < 0.05).

2.10. Molecular Docking Simulations

Regarding the molecular docking simulations, the target molecule was retrieved
from the Protein Data Bank repository. The targets, referred to as “Cryo-EM structure
of the 5HT3A receptor in the presence of granisetron” (PDB ID: 6NP0) and “Human
GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus flumaze-
nil” (PDBID: 6X3U), were determined by electron microscopy with resolutions of 2.92
and 3.50 Å, respectively, being classified as membrane/transport proteins. To prepare
the target, native cocrystallized ligands such as oligosaccharides, 1-methyl-N-[(1R,5S)-9-
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methyl-9-azabicyclo[3.3.1]nonan-3-yl]indazol-3-carboxamide (CWB), 2-acetamido-2-deoxy-
beta-D-glucopyranose (NAG), 8-fluoro-5-methyl-6-oxo-5,6-dihydro-4H-imidazo[1,5-ethyl
a][1,4]benzodiazepine-3-carboxylate (FYP), gamma-aminobutanoic acid (ABU) and chlo-
ride ions were used. Additionally, additional hydrogen atoms with polar and Gasteiger
charges were introduced using the AutoDock Tools software [35]. To define the grid box,
its center was determined at x = 133.895, y = 150.79, z = 124.352 and x = 138.138, y = 148.451,
z = 124.37, respectively, with dimensions of x = 80, y = 80 and z = 80. The completeness
criteria were set at 64. Finally, molecular docking simulations were performed using the
AutoDock Vina software, performing 50 independent simulations for each ligand on each
protein [36]. To validate the docking simulations, the re-docking technique was employed
using the grid box parameters for the control binders.

The selection of the best poses was based on two criteria. The first criterion involved
the root-mean-square deviation (RMSD), which serves as a validation metric for simulations
performed under ideal parameters up to 2.0 Å [37]. The second criterion used the binding
energy value (∆Gbinding), which is considered ideal when it presents values equal to or
lower than −6.0 kcal/mol. In addition, the parameters proposed by Imberty et al. [36] were
employed to evaluate the strength of hydrogen bonds considering the distances between
the donor and target atoms. Hydrogen bonding distances ranging from 2.5 Å to 3.1 Å, 3.1 Å
to 3.55 Å and greater than 3.55 Å were classified as strong, medium and weak, respectively.

Preparation of Binders

In the process of preparing the ligands for this study, the PubChem repository (https:
//pubchem.ncbi.nlm.nih.gov/ (accessed on 27 July 2023) was used to acquire the three-
dimensional structures of the molecules amentoflavone (AMT), diazepam (DZP), flumaze-
nil (antagonist) (Fmz), fluoxetine (Flx) and granisetron (antagonist) (Gstn). To optimize
their conformations, the MMFF94 force field and a steeper descent algorithm were used,
implementing cycles of interactions through MarvinSketch™ (https://chemaxon.com/
products/marvin (accessed on 27 July 2023) [38] and Avogadro ™ (http://avogadro.cc/
(accessed on 27 July 2023) [39].

3. Results
3.1. Anxiolytic-like Effect

AMT (0.01 or 0.1 or 1.0 mg/mL; 20 µL; i.p.) significantly increased (q = 10.00,
p < 0.0001; q = 9.051, p < 0.0001; q = 9.020, p < 0.0001 vs. naive and q = 9.518, p < 0.0001;
q = 8.568, p < 0.0001; q = 8.537, p < 0.0001 vs. vehicle) the permanence of aZF in the light
zone in the Light and Dark Test. There was no significant difference (q = 0.9502, p > 0.05;
q = 0.9814, p > 0.05; q = 0.03116, p > 0.05) between the groups treated with AMT only, and
there was no significant difference (q = 1.184, p > 0.05; q = 2.134, p > 0.05;
q = 2.165, p > 0.05) between the groups treated with AMT and DZP (10 mg/mL; 20 µL; i.p.;
q = 11.18, p < 0.0001 vs. naive and q = 10.70, p < 0.0001 vs. vehicle), Figure 3 (F5, 30 = 25.08).

3.1.1. The Involvement of the Serotoninergic System (5-HT2A)

Cypro (0.8 mg/mL; 20 µL; p.o.) did not significantly prevent (q = 1.806, p > 0.05 vs.
Cypro + AMT) the permanence in the light zone of aZF treated with AMT (0.01 mg /mL;
20 µL; i.p.) in the Light and Dark Test. However, Cypro (0.8 mg/mL; 20 µL; p.o.) signifi-
cantly prevented (q = 18.11, p < 0.0001 vs. Cypro + Flx) the permanence in the light zone of
aZF treated with Flx (1.25 × 10−3 mg/mL; 20 µL; i.p.), Figure 4 (F6, 35 = 90.62).

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://chemaxon.com/products/marvin
https://chemaxon.com/products/marvin
http://avogadro.cc/
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Figure 3. Anxiolytic-like effect of biflavonoid AMT in adult zebrafish (Danio rerio) in Light and
Dark Test (0–5min). Naive—untreated animals. Vehicle—3% DMSO (20 µL; i.p.). DZP—diazepam
(10 mg/mL; 20 µL; i.p.). Values represent mean± standard error of mean (S.E.M.) for 6 animals/group.
ANOVA followed by Tukey test (**** p < 0.001 vs. naive or vehicle).
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Figure 4. The effect of cyproheptadine (Cypro; 0.8 mg/mL; p.o.) on the anxiolytic-like effect of
the biflavonoid AMT (0.01 mg/mL; i.p.) in adult zebrafish (Danio rerio) in the Light and Dark
Test (0—5 min). Naive—untreated animals. Flx—fluoxetine (1.25 × 10−3 mg/mL; i.p.). Vehicle—
3% DMSO (20 µL; i.p.). Values represent the mean ± the standard error of the mean (S.E.M.)
for 6 animals/group. ANOVA followed by the Tukey test (**** p < 0.001 vs. naive or vehicle;
#### p < 0.001 vs. Flx; ns p > 0.05 vs. AMT).

3.1.2. The Involvement of the Serotoninergic System (5-HT1 and 5-HT2A/2C)

Pizotifen (Piz; 0.8 mg/mL; 20 µL; p.o.) did not significantly prevent (q = 1.834, p > 0.05
vs. Piz + AMT) the permanence in the light zone of aZF treated with AMT (0.01 mg /mL;
20 µL; i.p.) in the Light and Dark Test. However, Piz (0.8 mg/mL; 20 µL; p.o.) significantly
prevented (q = 20.64, p < 0.0001 vs. Piz + Flx) the permanence in the light zone of aZF
treated with Flx (1.25 × 10−3 mg/mL; 20 µL; i.p.) in the Light and Dark Test, Figure 5
(F6, 35 = 57.99).
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Figure 5. The effect of pizotifen (Piz; 0.8 mg/mL; p.o.) on the anxiolytic-like effect of the biflavonoid
AMT (0.01 mg/mL; p.o.) in adult zebrafish (Danio rerio) in the Light and Dark Test (0–5 min). Naive—
untreated animals. Flx—fluoxetine (1.25 × 10−3 mg/mL; i.p.). Vehicle—3% DMSO (20 µL; i.p.).
Values represent the mean ± the standard error of the mean (S.E.M.) for 6 animals/group. ANOVA
followed by the Tukey test (** p < 0.01; **** p < 0.0001 vs. naive or vehicle; #### p < 0.0001 vs. Flx;
ns p > 0.05 vs. AMT).

3.1.3. The Involvement of the Serotoninergic System (5-HT3A/3B)

Granisetron (Gstn; 0.5 mg/mL; 20 µL; p.o.) significantly prevented (q = 8.344,
p < 0.0001 vs. Gstn + AMT) the permanence in the light zone of aZF treated with AMT
(0.01 mg /mL; 20 µL; i.p.) and significantly prevented (q = 18.72, p < 0.0001 vs. Gstn + Flx)
the permanence in the light zone of aZF treated with Flx (1.25 × 10−3 mg/mL; 20 µL; i.p.)
in the Light and Dark Test, Figure 6 (F6, 35 = 58.12).
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Figure 6. The effect of granisetron (Gstn; 0.5 mg/mL; p.o.) on the anxiolytic-like effect of the
biflavonoid AMT (0.01 mg/mL; i.p.) in adult zebrafish (Danio rerio) in the Light and Dark Test
(0–5 min). Naive—untreated animals. Flx—fluoxetine (1.25× 10−3 mg/mL; i.p.). Vehicle—3% DMSO
(20 µL; i.p.). Values represent the mean± the standard error of the mean (S.E.M.) for 6 animals/group.
ANOVA followed by the Tukey test (**** p < 0.0001 vs. naive or vehicle; #### p < 0.0001 vs. AMT
or Flx).
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3.1.4. The Involvement of the GABAergic System

Flumazenil (Fmz; 0.1 mg/mL; 20 µL; i.p.) significantly prevented (q = 17.84, p < 0.0001
vs. Fmz + AMT) the permanence in the light zone of aZF treated with AMT (0.01 mg /mL;
20 µL; i.p.) and significantly prevented (q = 30.28, p < 0.0001 vs. Fmz + DZP) the permanence
in the light zone of aZF treated with diazepam (DZP; 10.0 mg/mL; 20 µL; i.p.) in the Light
and Dark Test, Figure 7 (F6, 35 = 169.7).
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Figure 7. The effect of flumazenil (Fmz; 0.1 mg/mL; i.p.) on the anxiolytic-like effect of AMT
biflavonoids (0.01 mg/mL; i.p.) in adult zebrafish (Danio rerio) in the Light and Dark Test (0–5 min).
Naive—untreated animals. DZP—diazepam (10 mg/mL; p.o.). Vehicle—3% DMSO (20 µL; p.o.).
Values represent the mean ± the standard error of the mean (S.E.M.) for 6 animals/group. ANOVA
followed by the Tukey test (**** p < 0.0001 vs. naive or vehicle; #### p < 0.0001 vs. AMT or DZP).

Anxiety Induced by Alcohol Withdrawal

As indicated in Figure 8, (F6, 385 = 67.58), continuous exposure to ACAA (EtOH 38%;
v/v; 20 µL; p.o.) until the 5th day of treatment in adult zebrafish (Groups 3–7) produced an
anxiolytic-like effect on the 4th (q = 6.986, p < 0.0001 vs. naive and q = 6.827, p < 0.0001 vs.
vehicle) and 5th (q = 7.135, p < 0.0001 vs. naive and q = 6.650, p < 0.001 vs. vehicle) days. On
the 6th (q = 6.976, p < 0.0001 vs. naive and q = 8.178, p < 0.0001 vs. vehicle), 7th (q = 7.340,
p < 0.0001 vs. naive and q = 8.532, p < 0.0001 vs. vehicle) and 8th (q = 7.619, p < 0.0001 vs.
naive and q = 8.020, p < 0.0001 vs. vehicle) days of abstinence from ACAA (38% EtOH; v/v),
an anxiolytic-like effect was also detected in aZF. Alcohol withdrawal (EtOH 38%; v/v;
20 µL; p.o.) induced anxiety in aZF from the 9th (q = 1.351, p > 0.05 vs. naive and q = 1.770,
p > 0.05 vs. vehicle) to 10th days (q = 1.425, p > 0.05 vs. naive and q = 1.807, p > 0.05 vs.
vehicle). The treatment of anxiety induced by alcohol withdrawal in aZF was performed
with DZP (Group 4) and AMT (Groups 5–7), on the 11th day. As a result, AMT (0.01 or
0.1 or 1.0 mg/mL; 20 µL; i.p.) significantly increased (q = 9.948, p < 0.0001; q = 9.269,
p < 0.0001; q = 5.728, p < 0.01 vs. naive or q = 10.13, p < 0.0001; q = 9.482, p < 0.0001; q = 5.915,
p < 0.01 vs. vehicle) the permanence in the light zone of aZF in the Light and Dark Test.
On the 11th day, there was no statistically significant difference between the anxiolytic-like
effect of AMT at any dose and DZP group (10 mg/mL; 20 µL; i.p.; q = 10.29, p < 0.0001 vs.
naive or q = 10.49, p < 0.0001 vs. vehicle).
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Figure 8. The effect of AMT (C1—0.01 or C2—0.1 or C3—1.0 mg/mL; 20 µL; i.p.) on the treat-
ment of anxiety in adult zebrafish (11th day), induced by abstinence from alcohol (EtOH 38%) in
the Light and Dark Test (0–5 min). G—group. C—concentration. Naive—untreated animals (con-
trol). ACAA—yellow cane spirit (20 µL; p.o.). Vehicle—3% DMSO (20 µL; i.p.). DZP—diazepam
(10 mg/mL; 20 µL; i.p.). Values represent the mean ± the standard error of the mean (S.E.M.) for
6 animals/group. ANOVA followed by the Tukey test (** p < 0.01; *** p < 0.001; **** p < 0.0001 vs.
naive, vehicle or ACAA).

3.2. Assessment of Locomotor Activity (Open Field Test)

AMT (0.01 or 0.1 or 1.0 mg/mL) did not change the animals’ locomotor activity
(Figure 9). However, diazepam (DZP; 10 mg/mL; 20 µL; i.p.) decreased the animals’ loco-
motor activity (q = 0.3163, p > 0.05; q = 1.965, p > 0.05; q = 2.530, p > 0.05 vs. naive or
q = 0.09036, p > 0.05; q = 2.372, p > 0.05; q = 2.937, p > 0.05 vs. vehicle), Figure 9
(F5, 30 = 111.4).

3.3. Anticonvulsant Activity

AMT (0.01 or 0.1 or 1.0 mg/mL, 20 µL; i.p.) did not delay the onset of clonus-like
seizures, followed by the loss of posturing in aZF (Figure 10). However, diazepam (DZP;
10 mg/mL; 20 µL; i.p.) significantly reversed (q = 20.58, p < 0.0001 vs. control) the onset of
clonus-like seizures, followed by the loss of posture in aZF, Figure 10 (F4, 25 = 74.31).
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Figure 9. The effect of the biflavonoid AMT on the locomotor activity of adult zebrafish (Danio rerio)
in the open field test (0–5 min). Naive—untreated animals. DZP—diazepam (10 mg/mL; 20 µL;
i.p.). Vehicle—3% DMSO (20 µL; i.p.). Values represent the mean ± the standard error of the mean
(S.E.M.) for 6 animals/group. ANOVA followed by the Tukey test (**** p < 0.0001 vs. naive or vehicle;
#### p < 0.0001 vs. DZP).
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Figure 10. The effect of the biflavonoid AMT on convulsive activity (clonus and loss of posture) in
adult zebrafish (Danio rerio) induced by pentylenetetrazole (PTZ). Vehicle—3% DMSO (20 µL; i.p.);
DZP—diazepam (10 mg/mL; 20 µL; i.p.). Values represent the mean ± the standard error of the
mean (S.E.M.) for 6 animals/group. ANOVA followed by the Tukey test (**** p < 0.0001 vs. control;
#### p < 0.0001 vs. DZP).

3.4. Acute Toxicity against Adult Zebrafish

For all doses of AMT tested (0.01 or 0.1 or 1.0 m/mL; 20 µL), no toxicity against aZF
was observed over the 24 h observation intervals up to 96 h, as determined by the trimmed
Spearman–Karber method. This suggests that the LC50 for AMT is greater than 1.0 mg/mL
(Table 1).
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Table 1. Results of AMT acute toxicity tests against adult zebrafish.

Sample
Adult Zebrafish Mortality 96 h of Analysis LC50

(mg/mL)/IV
Vehicle 0.01

mg/mL 0.1 mg/mL 1.0 mg/mL

AMT 0 0 0 0 >1.0
AMT—amentoflavone. Vehicle—DMSO 3% (control; 20 µL; p.o.). LC50—lethal concentration to kill 50% of adult
zebrafish; IV—confidence interval.

3.5. Molecular Modeling

In molecular modeling assays, further analysis revealed that amentoflavone had a
direct and significant interaction with the 5HT3A active site. This interaction was partic-
ularly notable when compared with reference substances such as fluoxetine (used as a
positive control) and granisetron (an antagonist). These interactions are clearly visualized
in Figure 11, indicating that amentoflavone has the ability to compete effectively with these
compounds, suggesting prominent anxiolytic potential.
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The detailed analysis of Table 2 reveals crucial information about amentoflavone and
its interaction with the protein’s active site compared to the positive control and antagonist.

Table 2. The binding energy and RMSD values between the 5HT3A target and the molecules analyzed.

Ligands ∆Gbind (kcal/mol) RMSD (Å)

AMT −9.8 1.207
Flx −7.7 1.226

Gstn −8.3 1.304
AMT—amentoflavone; Flx—fluoxetine; Gstn—granisetron; RMSD—root-mean-square deviation.

The visualization in Figure 12 of these interactions, where amentoflavone fits into the
active site of the GABA protein, reinforces the possibility of targeted and specific action.
Furthermore, the analysis of the values presented in Table 3 is remarkable. The ∆G of
−9.8 kcal/mol and the RMSD of 1.177 demonstrate that amentoflavone maintains an
extremely stable interaction with the active site of the GABAA protein. This stability may
indicate amentoflavone’s ability to effectively influence the activity of the GABA protein,
which plays a crucial role in modulating anxiety.
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Table 3. The binding energy and RMSD values between the GABAA target and the molecules
analyzed.

Ligands ∆Gbind (kcal/mol) RMSD (Å)

AMT −9.8 1.177
DZP −6.3 1.250
Fmz −6.4 1.994

AMT—amentoflavone; DZP—diazepam; Fmz—flumazenil; RMSD—root-mean-square deviation.

4. Discussion

The open field test is commonly used to evaluate sedative effects and drug-related
behavior in murine models [40], and it has been adapted to aZF [41]. According to Benneh
et al. [27] and Gupta et al. [42], diazepam (sedative control), a benzodiazepine, attenuates
the locomotor activity (mobility) of aZF in the open field. In this work, aZF treated with
AMT showed the same effect as aZF treated with diazepam in the open field test (Figure 3),
suggesting a possible sedative effect of AMT. The absence of a reduction in the locomotor
activity of aZF induced by the biflavonoid AMT indicates the lack of a sedative effect of the
sample. The sedative effect can be compared to the effects of benzodiazepines (anxiolytic
drugs; diazepam), which decrease the locomotor activity (mobility) of adult zebrafish
(Danio rerio) in open field tests, as highlighted by Benneh et al. [27], Gupta et al. [43] and Lin
et al. [28]. In this context, we investigated the possible anxiolytic-like effect and the potential
treatment of anxiety induced by the alcohol withdrawal of this dietary supplement.

Among the various tests to assess anxiety in adult zebrafish, the Light and Dark Test
is one of the most commonly used tests, since it is based on the paradigm of the innate
aversion of zebrafish to well-lit areas, similar to that of rodents. In such a test, the animals
not treated with anxiolytic drugs present the same behavior presented in mice, having an
aversion to light zones, as indicated by Gebauer et al. [25] and Maximino et al. [44]. In
this context, we also used the same animal model to investigate the anxiolytic-like effect of
the natural product AMT. In this study, all concentrations of AMT increased the time the
animals remained in the illuminated area of the aquarium, indicating an anxiolytic-type
effect (Figure 4). The use of this model corroborates the same results reported by other
researchers [27].

Cyproheptadine (Cypro) is an antagonist of the serotonergic system 5-HT2A. It an-
tagonizes the effects of fluoxetine (Flx), used as a positive control [27]. In this study, the
non-reversal of the anxiolytic-like effect of AMT by pretreatment with cyproheptadine
suggests that the anxiolytic effects of AMT are independent of the serotonergic receptor
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5-HT2A (Figure 5). Pizotifen is a non-selective antagonist of serotonergic systems 5-HT1
and 5-HT2A/2C. It antagonizes the effects of fluoxetine (Flx) used as a positive control [27].
In this work, the non-reversal of anxiolysis by pretreatment with pizotifen suggests that
the anxiolytic effect of the biflavonoid AMT is not dependent on serotonergic 5-HT1 and
5-HT2A/2C receptors. (Figure 6). Granisetron (Gstn) is an antagonist of the serotonergic
5-HT3A/3B system. It antagonizes the effects of fluoxetine (Flx) used as a positive con-
trol [27]. In this work, the reversal of anxiolysis by pretreatment with Gstn suggests that the
anxiolytic effect of the biflavonoid AMT is dependent on serotonergic receptors 5-HT3A/3B
(Figure 7). Flumazenil is an antagonist of benzodiazepine action at GABAA receptors,
thus inactivating the anxiolytic effects, sedation and hypnosis of benzodiazepines such as
diazepam [28,45]. In this work, the reversal of anxiolysis by pretreatment with flumazenil
suggests that the anxiolytic effect of the biflavonoid AMT is dependent on the GABAA
receptor (Figure 8). This study corroborated the same results obtained from our previous
studies, such as Ferreira et al. [14] who reported the anxiolytic-like effect of synthetic chal-
cone, as well as Silva et al. [46] who reported that Combretum lanceolatum extract reversed
anxiety on aZF with the participation of the GABAergic system.

The GABAergic system is related to the production and action of the GABA neu-
rotransmitter, which is one of the main inhibitory neurotransmitters in the brain. The
activation of GABAA and GABAB receptors promotes the hyperpolarization of nerve cells,
reducing neuronal excitability and causing a calming and anxiolytic effect [47]. On the
other hand, the 5HT3A/3B system refers to a specific class of serotonin type 3 (5HT3) recep-
tors found in the central and peripheral nervous system. Serotonin is another important
neurotransmitter, which plays a crucial role in regulating mood, sleep, appetite and other
brain functions. 5HT3A/3B receptors are involved in modulating the effects of serotonin in
the brain. Studies have shown that the activation of 5HT3 receptors may be associated with
anxiety induction, while the inhibition of these receptors may have an anxiolytic effect [48].
On the other hand, the activation of the GABAergic system, enhancing GABA action, has a
well-established anxiolytic effect [49].

Adult zebrafish have been used to investigate the potential of new alternative drugs
for the treatment of alcohol withdrawal-induced anxiety [14,46,50]. In this context, we
employed the same methods to assess the potential of AMT during alcohol withdrawal-
induced anxiety in aZF. As expected, all doses of AMT were effective in treating the
anxiety-like behavior in adult zebrafish induced by alcohol withdrawal on the 11th day
of treatment, a significantly similar effect to that of diazepam (Figures 9 and 10). Our
results corroborate the same results as from Ferreira et. al. [14], da Silva et al. [46] and
Marques et al. [50].

Amentoflavone shares the same active site with these compounds, which suggests
the possibility of similar or even superior action. However, the most evident aspect
was the stability of this interaction. We observed that amentoflavone exhibited a more
stable interaction compared to the positive control at the active site of the protein, as
evidenced by the ∆G value of −9.8 kcal/mol. This value suggests a strong bond between
amentoflavone and the target protein, which is a significant indication of its potential
efficacy as an anxiolytic agent. Furthermore, the RMSD value of 1.207 also demonstrated
that amentoflavone maintains a conformation relatively close to that of the active site,
which is fundamental to ensure the effectiveness of the interaction.

For the three substances, the presence of moderate (3.1 Å to 3.55 Å) and weak
(>3.55 Å) interactions stood out [27] from the type of hydrogen bonds in AMT (six) and
Flx (one). Gstn, like the other substances, will have Van der Waals bonds and π-type
interactions, which are weaker and more unstable than the first one. Here, we can highlight
the interactions performed with the amino acid ASN101. All substances interacted with
this residue, favorably (Gstnhb and Flxvw) or unfavorably (AMTd-d), and with interaction
forces of a greater (Gstn) or smaller (Flx) domain. Further regarding the forces of interac-
tion, we believe the phenomenon that occurred in vivo (depicted in Figure 7) reversed the
effectiveness of Gstn (antagonist), Flx and AMT.
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The observation of the interactions of amentoflavone with the GABAA protein in
in silico tests brings intriguing revelations and suggests a remarkable potential of this
substance in the context of anxiety treatment. The similarity in the binding of amentoflavone
to the same active site occupied by diazepam (positive control) and flumazenil (antagonist)
on the GABAA protein is particularly interesting and may provide valuable clues about
its anxiolytic effects. The in silico evaluation confirmed the data found in vivo, and these
results reinforce the hypothesis that amentoflavone not only has the ability to interact with
the active site of the protein but also to do so in a substantially more stable way compared
to the reference compounds. This greater stability may play a key role in its effectiveness as
an anxiolytic agent. Therefore, evidence from molecular modeling provides a promising
scientific basis for a further investigation and the potential development of amentoflavone
as a treatment for anxiety.

The relationship between these systems is still not completely understood, but some
evidence suggests they can interact and influence each other. For example, the activation of
5HT3A/3B receptors can modulate GABA release in certain areas of the brain, affecting the
activity of the GABAergic system [46].

However, it is important to emphasize that anxiety is a complex and multifaceted
phenomenon, involving several neurotransmitter systems and neural pathways. The inter-
action between the GABAergic and 5HT3A/3B systems is just one of several neurochemical
pathways involved in the regulation of anxiety. Having a compound with such specificity
as amentoflavone will allow for carrying out more focused studies for the development of
new anxiolytic treatments. In addition, AMT has been shown to be effective in reversing
anxiety induced by alcohol withdrawal, thus confirming its action on the GABAergic sys-
tem. The results obtained corroborate those in the literature that have already investigated
the anxiolytic activity of amentoflavone via the GABAergic pathway in mice [51] and
through the modulation of mTOR signaling [20] in rats.

These findings are promising for the search for new therapeutic approaches in the
treatment of anxiety and may provide important insights into the interaction between dif-
ferent neurotransmitter systems in the brain. Understanding the neurochemical pathways
involved in anxiety is crucial for the development of more effective therapies with fewer
side effects.

5. Conclusions

The data obtained in the present study revealed that the natural biflavonoid
amentoflavone (AMT) isolated from the leaves of Ouratea fieldingiana was not toxic and did
not present a sedative to aZF. AMT had specific anxiolytic effects through the serotonergic
5-HT3A/3B system, as well as GABAergic. It is noteworthy that the anxiolytic effect of AMT
was also evidenced in the in silico study, and the anxiolytic effect of AMT through the
GABAergic system was confirmed through the treatment of anxiety induced by alcohol
withdrawal. The absence of toxicity and such actions of these natural products in the central
nervous system demonstrate their pharmacological potential and thus insights into the
development of new anxiolytic drugs. Amentoflavone, as a compound with specific activity
on the GABAergic system, may represent a promising therapeutic option for the treatment
of anxiety and may also be an alternative for the management of alcohol withdrawal symp-
toms. However, more research is needed to confirm its effectiveness and safety in humans.
In the context of growing interest in natural and alternative medicines for anxiety disorders,
amentoflavone represents a possible source of new anxiolytic compounds. Continuing
studies in this area could lead to significant advances in the treatment of anxiety disorders
and contribute to a better quality of life for those who suffer from these conditions.
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